Decorative false windows with Solar Spectrum

he solar spectrum is the breakdown of sunlight into different wavelengths, ranging from infrared to ultraviolet light, which is seen as a rainbow of colours when sunlight is broken down through a prism.

The solar spectrum, with its diversity of wavelengths extending from about 400 nm in the violet region, has a direct impact on the rhythm of people’s lives as it interacts with the earth’s surface and our biology.

The wavelength of sunlight, particularly blue light, influences our circadian patterns and the production of melatonin, a key hormone in the regulation of sleep. Exposure to different wavelengths throughout the day not only affects our biological rhythms, but also affects our mood and general well-being, contributing to a healthier rhythm of life in harmony with natural cycles.

espectro luminoso

An innovative and sustainable solution

In the constant search for solutions that improve the quality of life and energy efficiency in our living spaces, the implementation of solar spectrum light sources has become a key factor in innovative architectural projects.

In this context, Actilum incorporates false windows with light or decorative false windows with solar spectrum technology into the interior of a home, with the aim of transforming dark environments into welcoming and sustainable places.

Throughout this tour, we explore solutions implemented in the kitchen and living room of one house, which demonstrate how the combination of decorative faux windows with solar spectrum can make a difference to the design and energy efficiency of our homes.

LED faux window with solar light and Luxpanel panels

Kitchen transformation

In the case of the kitchen, we were faced with the challenge of a window that faced a dark inner courtyard and provided no value. The solution we implemented was the installation of Luxpanel solar spectrum panels with diffuser that mimic the outside light instead of conventional window panes.

We incorporated a fake decorative window that mimics the appearance of a real window, in order to simulate natural light.

As can be seen in the photographs and video, the result demonstrates that solar spectrum light can transform spaces into more lively, natural and welcoming environments.

Artificial decorative LED windows and energy efficiency

espectro solar

Illuminated Lounge

In the living room, we opted to use highly energy-efficient technology in conjunction with LED lights that emulate the solar light spectrum. We incorporated two lightboxes in a false ceiling only 10 cm thick, together with a false window with light.

In addition, we created an accessible register to facilitate access to the electronics in the event of an incident, allowing the power supplies and controllers to be manipulated.

Saving energy with Solar Spectra

The result is natural lighting that simulates the effect of two independently controlled skylights using a remote control and a wifi mobile app. Two wall switches were also included for more conventional control.

These decorative fake windows mimic the appearance of real windows, but in reality, they are a source of artificial light using the solar spectrum.

This solution is characterised by its high energy efficiency, which can translate into energy savings of up to 50% in loss of brightness.

If you are interested in advice for similar architectural projects, we can help you transform your kitchen or living room with no access to natural light into cosy, smart and highly energy-efficient spaces, even including decorative false windows in the design.

Contact a technician

Before submitting your inquiry you can see our commitment to your privacy.

Responsible: Actilum RGB, S.L.

Purpose of the collection and processing of personal data: to manage the request you make in this contact form.

Rights: you may exercise your rights of access, rectification, limitation and deletion of data in info@actilum.com, as well as the right to file a complaint with a supervisory authority.

Additional information: in our privacy policy you will find additional information about the collection and use of your personal information. Including information on access, retention, rectification, deletion, security and other topics.

Contactar con un técnico

Antes de enviar tu consulta puedes ver nuestro compromiso con tu privacidad

Responsable: Actilum RGB, S.L.

Finalidad de la recogida y tratamiento de los datos personales: gestionar la solicitud que realizas en este formulario de contacto.

Derechos: podrás ejercer tus derechos de acceso, rectificación, limitación y suprimir los datos en info@actilum.com, así como el derecho a presentar una reclamación ante una autoridad de control.

Información adicional: en nuestra política de privacidad encontrarás información adicional sobre la recopilación y el uso de su información personal. Incluida información sobre acceso, conservación, rectificación, eliminación, seguridad y otros temas.

Built-in soft starter

LED soft start integrated in lighting

Solution to current spike when activating LED lights with soft start

When we activate an LED system, a current spike is triggered in the first few milliseconds.

 

In this short time, the power supply is faced with the task of building up the load and supplying the necessary power.

 

This initial phenomenon can create stresses in the system, affecting its stability and sometimes causing unwanted outages.

 

Gradual start-up

To address this challenge, a key solution has emerged: LED soft-start systems.

 

Unlike conventional ignition that requires immediate power delivery, this approach adopts a more gradual strategy.

 

During the first few milliseconds, the power supply delivers power to the light-emitting diodes (LEDs) progressively, thus avoiding sudden current peaks.

built-in-soft-starter-graph

Stability and elimination of interruptions

The benefits of this approach are significant. Firstly, system stability is guaranteed. 

 

The gradual delivery of power contributes to a smooth and controlled ignition, even in situations where multiple sources are connected to the mains. 

 

In addition, the implementation of LED lights with soft-start plays a very important role in eliminating interruptions.  

 

By avoiding initial overload, the chances of failure are reduced and overall system durability is improved. 

 

Preventing glare in LED lighting

An additional, but no less important aspect is the elimination of glare when switching on the system. 

 

The smooth transition provided by soft start creates a more comfortable environment with uniform and safe illumination for users, especially in situations with sensitive lighting conditions. 

 

Integrating soft-start into LED systems not only effectively addresses the challenges associated with initial peak current, but also improves stability, reduces interruptions, controls luminous intensity and creates a smoother and more efficient lighting environment.

 

The benefits of integrated soft start 

Integrated soft start in Actilum lighting systems represents a key innovation with significant benefits. This gradual approach to activating LED lights brings advantages that go beyond simply eliminating the initial current spike. Here we explore the key benefits of this technology: 

 

Improved stability

Soft start ensures a smooth transition by delivering power gradually. This approach avoids sudden current spikes, contributing to improved stability in the lighting system. Users enjoy a controlled start-up without unpleasant surprises. 

 

Reduced interruptions

By avoiding instantaneous power load, soft start minimises interruptions in system operation. This reduction in failures provides a more reliable and sustainable lighting experience, especially in environments with multiple sources connected to the mains. 

 

High durability

Smooth start-up not only benefits stability, but also contributes to overall system durability. The elimination of harsh impacts on the lighting system reduces wear and tear on components, thus prolonging service life and optimising long-term performance.

 

More comfortable lighting environment

The gradual transition provided by soft start creates a more comfortable lighting environment for users. The absence of glare on activation improves visual comfort and light intensity, especially in situations where sensitive lighting is crucial. 

 

Energy efficiency

By delivering power progressively, unnecessary power peaks are avoided, contributing to a more efficient management of energy consumption. This sustainable approach not only improves system efficiency, but also supports responsible energy practices.

 

Our objective, to find solutions.

At Actilum, we seek innovative lighting solutions that optimise system performance.  

 

We persist in the continuous search for solutions that strengthen stability, minimise disruption and provide smoother illumination.  

 

This commitment is the foundation of our dedication to excellence and efficiency in the lighting industry. 

Integrated soft start goes beyond solving initial challenges; it offers an advanced lighting experience that translates into improved stability, durability, comfort and energy efficiency.  

 

In our constant pursuit of excellence, this innovative technology reflects our commitment to providing superior and tailored lighting solutions that are sustained on the basis of functionality and sustainability. 

 

We are at your disposal for your enquiries!

Chromatic coordinates

Chromatic coordinates allow us to precisely identify the colorimetric characteristics of a light source.

 

The exact position of the coordinate is defined in X and Y within a graph defined at its ends by the basic RGB colors.

 

In the brightest central part are defined the white tones ranging from 1,000ºK (yellowish white) to 20,000ºK (bluish white).

 

The MacAdam ellipses inform us about the level of color variation possible between these axes before the human eye can detect these color changes.

The distance between ellipses is measured in SDCM (Standard Deviation of Color Matching):

 
  • 1 SDCM: No color differences exist.
  • 2-4 SDCM: There is hardly any visible difference.
  • 5 or more SDCM: It is easily perceptible.

Power factor

LED technology has transformed lighting, providing efficiency and durability.

However, an often overlooked aspect is the Power Factor (PF), which plays a key role in the energy efficiency of LED systems.

Current drivers and their influence on the FP

A driver, or power supply, is an essential electronic component that is responsible for regulating and supplying the electrical current needed to power the light-emitting diodes (LEDs).

Its main function is to convert the alternating current (AC) coming from the mains into direct current (DC), thus ensuring an adequate and stable power supply for proper operation.

During this conversion process, a phase shift occurs between voltage (V) and current (A).

This mismatch, determined by the quality of the driver, can significantly affect the overall performance of the power system.

What is Power Factor?

The PF, represented on a scale from 0 to 1, acts as an indicator of this phase shift or energy loss. A PF of 1 indicates a system with no phase shift, which is ideal for maximum efficiency.

On the other hand, the lower this value, the higher the phase shift and consequently the higher the power consumption of the LED system as a whole.

How to calculate the power factor?

For the power factor formula: PF = cos(θ), where θ is the phase angle between current and voltage.

It can also be calculated by dividing the active power (kW) by the apparent power (kVA). (See Kilovoltampere).

Relationship between FP and energy consumption

The relationship between FP and energy consumption is direct:

The lower the FP, the higher the consumption.

This means that the efficiency of LED lighting depends not only on the quality of the light emitting diodes, but also on the driver’s ability to minimise the phase shift.

What is the impact of a low level of FP?

Economy

It is not only the energy consumption that is affected by low FP, but also the associated costs. An inefficient LED system not only increases the utility bill, but also requires more installation capacity, which means additional expenses.

Environment

From an environmental perspective, increased energy consumption contributes to higher resource demand and greenhouse gas emissions.

Thus, improving FP not only benefits finances, but also addresses environmental concerns.

How to improve and correct the PF factor in LED systems

For power factor (PF) correction and to optimise energy efficiency in LED lighting, it is essential to consider the quality of the current drivers. Choosing drivers with a high PF ensures optimum performance, minimising phase shift and thus reducing energy consumption in electrical circuits.

In addition, it is essential to involve LED design and installation professionals to ensure that specifications are met and efficiency is maximised in each project.

More efficient LED lighting

Power Factor emerges as a key element to evaluate and improve the useful energy in an electrical equipment or LED lighting system.

By understanding the relationship between FP, lag and energy consumption, we can make informed decisions that benefit both finances and the environment.

Investing in high quality drivers with a PF close to 1 is essential to ensure optimal and sustainable performance.

Our focus is on selecting and recommending high quality electronic components that contribute to maximising the lifetime, efficiency and overall performance of the LED lighting solutions we offer.

At Actilum we understand that the proper implementation of inputs and components not only impacts energy efficiency, but also economic and environmental aspects, which supports our commitment to sustainable and innovative solutions.

Contact us for advice on this and other topics related to your next lighting project!

Kilovoltampere

A detailed analysis of energy consumption

In the field of LED lighting, understanding the technical terms is essential to make informed and energy-efficient decisions.

 

One of these key terms is kVA, which plays a major role in assessing the actual power consumption in the current circuits of our LED systems.

 

The kVA, or kilo volt ampere, is a measurement that provides information about the actual power consumption (W) of our LED system.

 

It is essential to be clear that 1000VA is equivalent to 1000W when the power factor (PF) is equal to 1.

Power factor

Power factor is a ratio that indicates the efficiency with which electrical energy is converted into useful energy (see Power Factor).

 

In the context of LED lighting, it is relevant to distinguish between kVA and kW.

Kilovoltampere and Kilowatts (kVA and kW)

The kW represents the active power of an electrical system, i.e. the real power or useful power, which it realises.

 

On the other hand, the kVA indicates the apparent power, which is the combination of active power and reactive power.

 

This measure not only considers the energy actually used to do useful work, but also takes into account the energy that is dissipated as reactive power, providing a more complete picture of the energy efficiency of the LED system.

 

Understanding this combination of factors is essential to optimise performance and minimise energy waste in our lighting installations.

Calculations

Now, let’s look at a practical example to understand how this affects our energy bills.

Suppose our LED system consumes 1000W with a power factor (PF) of 0.6. In this case, the total amount of real power we will pay for is not just 1000W, but 1400W.

This discrepancy between active kW power and apparent kVa power has economic implications.

 

Energy suppliers usually bill for the apparent power consumed, which means that we pay for an amount of energy that is not efficiently used in the system.

 

Understanding this difference is essential to optimise consumption and reduce associated costs.

 

The kVA in LED lighting is not just a technical concept; it has a direct impact on our energy bills.

 

By understanding and considering power factor when designing and implementing LED lighting systems, we can maximise energy efficiency and minimise the operating costs of an electrical circuit or electrical equipment.

 

In the context of LED lighting, understanding kVA means recognising its importance in assessing the actual energy consumption of systems.

 

At Actilum, we are committed to efficiency and sustainability in each of our projects. We constantly seek to integrate innovative technologies and practices that not only optimise energy consumption, but also reduce environmental impact.

 

Our mission is to go beyond lighting, working in partnership with our customers to develop solutions that reflect not only a commitment to efficiency, but also to long-term environmental responsibility.

 

Contact us if you have any questions.

Free of electromag. rad.

Electromagnetic radiation is produced by oscillating electric waves which, by creating magnetic fields, affect other electronic equipment in the surrounding area.


The regulations clearly mark the levels that should not be exceeded in order not to affect people.  There are LED products that do not emit radiation and others that do. 


Led solutions can be passive and not emit electromagnetism. It is essential that they do not have coils, which are responsible for creating electrical pulses and pulsating frequencies.  

How electromagnetic radiation affects

Parallel Flex L6

This product emits electromagnetic radiation in compliance with low emission standards.

Parallel M9

This product does not emit electromagnetism, it has no coils or frequency oscillators.

Complies electromagnetic radiation standard

Electromagnetic radiation standard in everyday life

Exposure to electromagnetic fields (EMF) is a topic of growing interest and concern, as it covers a wide range of frequencies in the electromagnetic spectrum.

 

Electric and magnetic fields, fundamental to the propagation of electromagnetic energy, manifest themselves in various forms, from visible light to radio frequency fields.

As technology advances, exposure to these fields is intensifying, raising concerns about possible biological effects.

 

Electromagnetic hypersensitivity, a controversial phenomenon but the subject of epidemiological and other studies, highlights the need to understand the potential consequences of exposure to variable frequency electromagnetic fields.

 

Investigating the relationship between exposure to electromagnetic fields and biological effects is essential to establish guidelines that mitigate potential risks and promote a balance between technological progress and public health protection.

How electromagnetic radiation affects

Perspectives towards the lowest possible exposure

Electromagnetic radiation is produced when a charged particle, such as an electron, undergoes acceleration. This acceleration can be caused by various processes, and the result is the emission of electromagnetic waves that carry energy through space.

 

Some of the common processes that generate electromagnetic radiation are described below:

 

Emission of photons by atoms.

When electrons in an atom undergo transitions between energy levels, they emit photons. The energy of these photons determines the frequency and wavelength of the electromagnetic radiation emitted.

This phenomenon is fundamental to the emission of light by light sources, such as the sun or a lamp.

 

Acceleration of electric charges

When electric charges, such as electrons, are accelerated, they emit electromagnetic radiation. This principle is behind the generation of radio waves in antennas, microwaves in ovens, and X-rays in x-ray machines, for example.

 

Electric currents in antennas

In electronic devices and antennas, electric currents generate magnetic fields. Changes in these magnetic fields induce electric currents in antennas, thus creating electromagnetic waves that propagate through space.

 

Each type of electromagnetic radiation has specific frequency and energy characteristics associated with it. Electromagnetic radiation is an essential part of the universe and manifests itself in the following ways

Consequences of this effect on the population

Electrosensitivity

Electrosensitivity, also known as electromagnetic hypersensitivity syndrome (EHS), is a phenomenon in which people report experiencing adverse symptoms in response to exposure to electromagnetic fields, such as those generated by electronic devices and wireless networks.

 

However, it is important to note that the causal relationship between electromagnetic fields and electrosensitivity symptoms is not fully established in the scientific community, and many studies have failed to consistently replicate the symptoms reported by electrosensitive individuals.

 

Several factors may contribute to the phenomenon of electrosensitivity, and theories include psychological, environmental and physiological aspects.

 

Some possible factors and mechanisms proposed include:

 

Psychological factors

It is suggested that stress, anxiety and other psychological factors may play a role in the perception and intensification of electrosensitivity symptoms. 

 

Environmental sensitisation

Chronic exposure to electromagnetic fields may lead to sensitisation of the nervous system, which may contribute to the onset of symptoms.

 

Physiological responses

Some studies suggest changes in physiological responses, such as the release of certain chemicals in the brain, may be related to electrosensitivity in certain individuals.

 

It is important to note that most scientific research has not found conclusive evidence to support the existence of electrosensitivity as a specific medical syndrome.

 

The World Health Organisation (WHO) and other health agencies have stated that there is no strong scientific evidence to support the existence of electrosensitivity as a unique medical entity.

 

Understanding this phenomenon is still an area of study and debate in the scientific community.

 

According to estimates, 5-10% of the population is considered electrosensitive, meaning that they are more likely to experience adverse symptoms related to exposure to electromagnetic radiation. 

 

Headaches, insomnia, irritability, depression and a possible increased risk of cancer are some of the effects that have been recognised by the World Health Organisation (WHO). 

 

Important recommendations from the Council of Europe

In response to growing concern about the possible adverse effects of electromagnetic radiation, the Council of Europe has issued Resolution 1815.  

 

In this document, it stresses the importance of applying the ALARA Principle, which suggests that exposure to these waves should be kept as low as possible.  

 

These recommendations seek to ensure the protection of public health and the well-being of society in general.

The ALARA principle

The acronym “ALARA” is derived from the English expression “As Low As Reasonably Achievable”, which translates into English as “As Low As Reasonably Achievable”.  

 

ALARA is a principle used in the field of radiation protection and radiation safety.

 

This principle reflects the idea of minimising exposure to ionising radiation as much as practically possible, taking into account economic and social factors.  

 

In other words, it seeks to keep radiation exposure as low as reasonably achievable, considering the benefits and costs associated with reducing exposure. 

 

The ALARA Principle is applied in a variety of contexts, such as nuclear facilities, industries using ionising radiation, and in the medical field, where procedures such as X-rays and radiotherapy treatments are performed.  

 

Compliance with these regulations helps to ensure the safety of individuals and to minimise the risks associated with radiation exposure.

 

Living with electromagnetic radiation

Electromagnetic radiation is a phenomenon intrinsic to energy transmission, but its impact on human health has raised significant concerns.  

 

Electrosensitivity and possible adverse effects underline the importance of taking preventive measures.  

The application of the ALARA Principle, endorsed by the Council of Europe, provides a prudent framework for ensuring low emissions and promoting safety in the use of technologies that emit electromagnetic radiation. 

 

Ultimately, it is about balancing the desirability of the technology with the precaution necessary to protect public health.

Our commitment

The company’s priority is to ensure a safe and healthy working environment, both for its employees and for the community at large.  

 

In this regard, rigorous protocols and advanced technologies are applied to keep levels of exposure to electromagnetic radiation as low as reasonably achievable.

 

Actilum recognises the importance of being at the forefront in terms of safety and environmental responsibility.  

 

Therefore, preventive measures are continuously implemented and awareness of the potential risks associated with electromagnetic radiation is promoted among employees.  

 

This philosophy is aligned with international standards and the recommendations of specialised bodies, reaffirming Actilum’s commitment to the health and well-being of society as a whole. 

 

Send us your enquiry!

Ecodesign

Environmental awareness and responsibility

Reducing environmental impacts in the life cycle of products and services

Ecodesign, emerges as a sustainable way to address environmental impacts from the initial phase of product and service development.

 

This strategy seeks to identify, analyse and mitigate potential negative effects on the environment throughout the entire life cycle of the product or service, while maintaining an unprecedented standard of quality.

Product life cycle and its different phases

The life cycle encompasses various stages that go beyond the simple manufacture of a product.

 

It ranges from raw material and input selection criteria, design and production, packaging, transport, distribution, use, repair, recycling and reuse.

 

Each of these phases presents opportunities to implement sustainable practices and reduce the environmental footprint.

Raw materials

Raw material selection is approached with a proactive focus on manufacturing a sustainable product, prioritising materials from renewable, resource-efficient, recyclable or biodegradable energy sources.

 

Our choice is guided by low carbon intensity, promoting transparency in the supply chain and working with suppliers committed to ethical practices.

 

This conscious approach reflects our commitment to creating high quality, environmentally friendly products, contributing to a circular economy and climate change mitigation.

 

The selection of materials with low environmental impact and the implementation of clean technologies are essential to achieving these goals.

Design and production

Sustainable design represents the convergence of creativity and environmental responsibility.

 

The effort must be oriented towards conceiving innovative solutions that not only meet high quality standards, but also minimise their environmental impact throughout their entire life cycle.

 

In production processes, the starting point of a product’s life cycle and quality, eco-design is fundamental.

 

Here, the aim is to optimise processes, reduce the consumption of energy and natural resources and minimise greenhouse gas emissions.

Packaging

Eco-design extends to packaging, focusing on waste reduction and the choice of recyclable materials.

 

Efficient use of packaging, without compromising product protection, is essential to minimise environmental impact at this stage.

Transport and distribution

Optimising transport routes and adopting more efficient vehicles are key practices in the transport and distribution phase.

 

Logistics efficiency not only reduces costs, but also reduces the carbon emissions associated with the movement of goods.

Product use

The use stage involves considering energy efficiency and product durability. Designing products that consume less energy over their lifetime and require less maintenance contributes significantly to sustainability.

Repair

Encouraging repair versus obsolescence is a fundamental principle of eco-design.

 

Designing modular products and providing repair information can extend product life and reduce the need for replacement.

End of life of the product

Recycling and reuse

Ecodesign addresses end-of-life management. Facilitating recycling by choosing recyclable materials and promoting reuse contributes to closing the life cycle in a sustainable way.

 

Eco-design is not just a trend; it is a necessity in a world increasingly aware of its environmental impact.

 

By addressing all phases of the life cycle, from conception to final disposal, eco-design becomes a valuable tool for companies committed to environmental responsibility.

Our commitment

At Actilum we foster a corporate culture committed to integrating eco-design into all phases of our projects.

 

We recognise the importance of embracing sustainable development practices from the beginning of the process, prioritising efficiency in manufacturing, waste reduction in packaging, optimisation in transport and distribution, as well as promoting repair, recycling and reuse.

 

Our vision goes beyond the mere implementation of environmental policies; we strive to lead the way towards a more sustainable future in the industry.

 

By aligning our philosophy with the principles of green design, we seek not only to reduce our environmental impact, but also to inspire our collaborators, partners and clients to adopt responsible and sustainable practices.

 

Every project at Actilum is an opportunity to demonstrate that design excellence is not at odds with environmental responsibility.

 

By integrating eco-design into our daily work, we reaffirm our commitment to sustainable innovation and actively contribute to building a greener, more resilient future for generations to come.

 

At Actilum, eco-design is not just a methodology, it is a commitment rooted in our mission to build a more environmentally conscious and respectful business world. Contact us!

ECOVADIS GOLD
Sustainability rating

Flicker Free!

Understanding Flicker and Changes in Light Intensity

In general terms, flicker refers to visible and repetitive changes in light intensity, mostly caused by fluctuations in electrical voltage.

This phenomenon is common in LED luminaires, affecting various areas such as general lighting, computer monitors or TV screens, among others.

Let’s look at situations where we can see this effect

It can manifest itself in various situations and devices due to fluctuations in the electrical current. Here are some examples where we can appreciate this phenomenon:

Conventional lighting

Incandescent and fluorescent bulbs may also experience flicker, especially at the end of their lifetime. In the case of fluorescent bulbs, the frequency of flicker may be higher, and some people may notice flickering, especially in environments with old or low-quality fluorescent lighting.

 

Household appliances

Some electrical appliances, such as hoovers, fans and appliances with electric motors, can generate fluctuations in electrical current that result in perceptible flicker.

Displays of electronic devices

In addition to the computer monitors and television screens mentioned above, the screens of electronic devices such as smartphones and tablets can also exhibit flicker, especially when used at low brightness levels.

Security cameras

Some security cameras and surveillance systems use LED lighting for night vision, and may emit noticeable flicker.

Automotive lighting

In some cases, LED lights used in car headlights can generate flicker, which can be annoying for drivers and other road users.

Charging devices

Some electronic device chargers can generate fluctuations in electrical current during the charging process, which can result in noticeable flicker in nearby lights.

 

LED lighting

In the case of LED luminaires, the flicker may be due to the modulation of the electrical current to control the intensity of the light. Although this flicker may be imperceptible to many people, some people are more sensitive and may experience symptoms such as eyestrain, headaches, eye irritation or difficulty concentrating when exposed to it for prolonged periods of time.

It is important to address and minimise the flicker effect in these situations, as it can have implications for the visual health and general well-being of people exposed to it on a regular basis.

Flicker-Free Technology

Protecting our visual health

Flicker-Free or Free Flicker technology plays an extremely important role in protecting our eyesight against eyestrain.

Its main function is to counteract the flickering present in LED light sources, offering an effective solution to problems such as headaches, dry eyes and eyestrain.

Influence on visual perception

The implementation of Flicker-Free technology aims to provide a more comfortable and healthier viewing experience by minimising or completely eliminating noticeable flicker in LED lighting.

This development is particularly relevant in essential environments such as offices, homes and commercial spaces.

Well-being with flicker-free technology

Flicker-Free technology not only addresses technical problems in LED luminaires, but also has a direct impact on visual health and user comfort.

 

By choosing products that integrate this technology, we are opting for a more efficient and eye-friendly illuminated environment, thus promoting a healthier lifestyle in the age of LED lighting.

The importance of addressing the flicker effect goes beyond LED lighting.

By choosing products with Flicker-Free technology, such as those available from Actilum, you are making a conscious choice towards healthier and more comfortable visual environments.

 

The innovation behind this technology reflects our commitment to excellence in lighting and user well-being.

At Actilum, we prioritise expertise by offering products and solutions that integrate Flicker-Free technology.

Our dedication to visual quality and well-being is reflected in every aspect of our products, ensuring efficiently lit, eye-friendly environments.

¡Contact us!

Variable color temperature

Technical Applications and Specific Solutions

White-Tunable products (Tunable white)

The evolution in lighting technology presents us with white-tunable products, a solution that allows the colour temperature of a luminaire to be adjusted in a precise range, from 2,700ºK to 6,500ºK.

 

This technical advance is positioned as a key tool in commercial and residential environments, giving users precise control over the appearance of the light emitted.

Dim-to-Warm (Dimming to warm)

Emulating the warm illumination of incandescent sources

Within the variable colour temperature category, dim-to-warm products stand out for their ability to emulate the warm lighting characteristic of incandescent sources.

 

This specific approach becomes particularly valuable in environments that seek to create intimate and cosy atmospheres, such as hospitality and restaurants.

 

Hue and intensity control

Beyond colour temperature reproduction, dim-to-warm technology incorporates dimming capability. This feature goes beyond adjusting the hue of the light, allowing the intensity of the light to be modified as well.

 

This provides a versatile lighting experience that is adaptable to different times of the day or activities.

 

Creating tailor-made atmospheres

The practical application of white-tunable and dim-to-warm products is evident in their ability to modify the atmosphere of a space according to the user’s preferences.

 

From cooler, brighter lighting to increase productivity during the day to a warmer, dimmer shade to create relaxed ambiance in the evening, variable colour temperature becomes a valuable tool to meet a variety of lighting needs.

 

Customisable solutions

Variable colour temperature, especially through white-tunable and dim-to-warm products, represents a significant advance in lighting system design.

 

This technical and precise approach reflects the continuous evolution of lighting towards more customisable and adaptive solutions, addressing not only aesthetic but also functional aspects to create visually appealing and functionally efficient environments.

 

At Actilum, we are proud to highlight our commitment to innovation and excellence in the development of high-tech LED products.

 

We are driven by the vision of providing our customers with lighting tools that not only meet their current needs, but also anticipate and adapt to future demands.

 

Our constant pursuit of technical excellence allows us to lead the way in the design and implementation of advanced lighting systems, offering products that not only transform spaces, but also set new industry standards.

 

We are committed to creating superior lighting experiences by combining the latest technology with a real-world approach to our customers’ needs.

 

Learn more about us!

Dimmable

Intensity control of LED lighting

The term “dimmable” in the electrical field derives from the English word “dimmer”, which translates as dimmer or dimmer.

 

In essence, this concept is used to describe devices designed to control power at one or more levels, for the purpose of managing and adjusting the intensity of the light emitted.

 

Dimmable products

When we refer to dimmable products within the lighting sector, and in this case dimmable LED lights, we are talking about luminaires that have the ability to modify their light intensity.

 

This feature provides more precise control over the lighting, allowing the environment to be adapted to different needs and preferences.

 

Innovation in dimmable lighting

In this context, Actilum is committed to providing advanced solutions that not only meet quality standards, but also anticipate and satisfy the changing demands of the market.

 

Energy saving

Dimmable LED technology plays a major role in energy savings by providing more precise control over light intensity.

 

Extended luminaire life

By reducing the luminous intensity, the thermal load on the lamps is reduced, which can extend their lifetime. This means that lamps need to be replaced less frequently, which in turn contributes to saving resources.

 

Overall, dimmable technology offers more efficient and sustainable lighting management, resulting in significant energy savings and a reduction in associated costs.

Lighting with dimmable technology
Residential environments

Living rooms
Adjusting the light intensity in living rooms as needed creates a cosy atmosphere for relaxation or brighter lighting for social activities.

 

Bedrooms
Implement dimmers to create dimmed lighting at night to create an environment conducive to rest.

Commercial scenarios

Clothing shops
Controlling the intensity of light to highlight certain display areas enhances the shopping experience.

 

Restaurants
Adapting lighting to create different atmospheres during the day and night provides a more enjoyable dining experience.

Workspaces

Offices
Regulating lighting in work areas reduces glare on computer screens and promotes a comfortable working environment.

 

Conference rooms
Adjusting light intensity during presentations optimises visibility and attention.

Entertainment industry

Theatres
Using dimmers to control stage lighting helps to create dramatic effects by adapting the light to different scenes.

 

TV studios
Adjusting lighting in real time during filming highlights specific details and creates different moods.

Outdoor lighting

Gardens and patios
Installing dimmers to adjust the intensity of outdoor lighting contributes to the creation of a relaxed atmosphere by highlighting landscape features.

 

Building facades
Controlling architectural lighting helps to highlight details of the structure or change the appearance of the building during special events.

 

These examples illustrate how dimming can be applied in a variety of environments, providing flexibility and customisation in electrical lighting management.

 

Our vision
The term “dimmable” not only describes a technical feature in the world of lighting, but represents a significant advance in the control and customisation of light.

 

Actilum, as a leader in innovation, continues to illuminate the future by offering dimmable solutions that go beyond expectations, providing exceptional lighting control in every application.

 

Learn more about our lighting projects!

Chromatic coordinates after 6,000h

Chromatic coordinates allow us to precisely identify the colorimetric characteristics of a light source.

 

The exact position of the coordinate is defined in X and Y within a graph defined at its ends by the basic RGB colors.

 

Over time (thousands of hours), these coordinates shift from their origin causing the LED to emit a color different from the original.

In professional LEDs this color variation is not noticeable to the human eye.

Luminous flux maintenance

The amount of light from any luminaire decreases over time.


The lifetime of an LED has been standardized in the industry as the reduction of its luminous capacity to 70% of the initial output within 50,000 hours. It is also known as L70.


There are products that have better degradation than the standard, reaching L90 (90%) or even more.

Contact

Before submitting your inquiry you can see our commitment to your privacy.

Responsible: Actilum RGB, S.L.

Purpose of the collection and processing of personal data: to manage the request you make in this contact form.

Rights: you may exercise your rights of access, rectification, limitation and deletion of data in info@actilum.com, as well as the right to file a complaint with a supervisory authority.

Additional information: in our privacy policy you will find additional information about the collection and use of your personal information. Including information on access, retention, rectification, deletion, security and other topics.

CRI

Colour Rendering Index CRI or CRI

Colour rendering index

Sunlight as a reference standard establishes the importance of the Colour Rendering Index (CRI), an essential technical measure for evaluating the quality of light sources.

 

The CRI provides highly relevant information on the ability of a light source to faithfully reproduce the colours of an object, compared to sunlight.

Colour rendering accuracy

Colour rendering accuracy is a fundamental factor in the design and implementation of lighting systems.

The Color Rendering Index (CRI) becomes an essential tool when evaluating this aspect.

 

The higher the CRI value associated with a light source, the greater its ability to accurately display the true colours of illuminated objects.

 

The CRI, expressed on a scale from 0 to 100, is directly related to colour fidelity. A higher value implies that the light source has an improved ability to faithfully reproduce colours as they would be in natural sunlight.

 

This parameter not only indicates the quality of the emitted light, but also results in a more realistic and accurate representation of objects in the illuminated environment.

 

Accurate colour rendering not only enhances the visual experience, but also contributes to efficiency and productivity in professional environments.

 

In medical, laboratory applications or any situation where accurate colour identification is essential, the choice of high CRI light sources becomes a determining criterion.

 

Visually authentic

CRI is not only relevant in spot environments, but also plays an essential role in visual perception and accurate colour identification in various applications.

 

In an environment where visual accuracy is essential, such as commercial or design spaces like a photo studio or a clothing shop, where product presentation is paramount, the selection of light sources with a high CRI becomes critical.

 

The colours of products, artwork or any visual element will be presented more authentically, allowing observers to perceive them with the same richness and detail as under natural light.

The LED LRC in project planning

Colour sampling and objective comparison

To assess the colour rendering quality of a light source, standard colour samples are used, comparing the appearance under artificial illumination with its appearance under a natural light source such as the sun.

 

This process provides an objective assessment of colour fidelity.

 

Considering the CRI in planning with LED lighting ensures the colour fidelity of illuminated objects and helps to create more accurate and pleasing visual environments.

Light sources with high CRI

Examples

The adoption of light sources with a CRI higher than 90 results in more natural and realistic colours, thus improving the visual quality of the illuminated spaces significantly.

 

Lighting in an art gallery

Without high CRI

By using light sources with a standard CRI, works of art can lose some of their original vibrant colour palette. Reds may appear dull, and blues may not stand out in the desired way.

 

With high CRI

By incorporating light sources with a higher CRI, accurate colour rendering is achieved, allowing gallery visitors to appreciate paintings with natural, realistic colours, just as the artists intended.

 

Lighting in a Clothing Store

No high CRI

Poor lighting can affect the perception of clothing colours in a shop. The shades of fabrics may not be true to reality, which can influence customers’ purchasing decisions.

 

With high CRI

By using light sources with high CRI, clothing is presented accurately and with realistic colours.

This not only improves shop aesthetics, but also helps customers make more informed purchasing decisions by seeing garment colours authentically.

 

These examples highlight how the choice of high CRI light sources not only enhances visual aesthetics, but also influences perception and decision making in different environments, from art galleries to retail spaces.

 

Our task

At Actilum the meaning of authenticity is reflected in the constant search for lighting solutions that not only meet technical standards, but also contribute effectively to the creation of precise and natural visual environments.

 

In this context, meticulous attention to CRI becomes a fundamental pillar in our philosophy, ensuring that our proposals not only illuminate, but also faithfully reproduce the chromatic richness of spaces, thus elevating the visual experience of our clients.

 

Get to know us!

Light beam

Light Beam, a technical look

Starting point of light rays

In the formation of a light beam, the light rays share a common origin. This is achieved through the use of point or directional light sources.

 

These sources are essential for the creation of light beams with specific properties and are useful in the design of optical devices and lighting systems.

Light propagates but does not scatter

Light beam meaning

From a scientific perspective, a “beam of light” is described by the principles of optics and the electromagnetic theory of light. Here is a more detailed scientific explanation:

 

Wave nature of light

According to the wave theory, light propagates in the form of electromagnetic waves. In the case of a light beam, these waves are emitted from a source and propagate through space.

 

Phase coherence

A coherent light beam is characterised by phase coherence, which means that the electromagnetic waves that make up the beam have constant phases with respect to each other.

 

This results in directional propagation and the ability to form constructive interference patterns.

 

Point light sources or specific directions

A light beam can originate from point light sources, such as a laser, where photons are emitted coherently. It can also be formed by the specific direction of light through optical elements, such as lenses or mirrors.

 

Non-scattering propagation in a light beam means that the rays maintain a constant direction as they travel.

This phenomenon is essential for uniform light distribution.

 

In practical applications, the ability to control non-scattering propagation is used in efficient lighting systems.

Here are some examples

LED torch

The light emitted by an LED torch is an example of a bright beam of light. Light emitting diodes (LEDs) generate a focused beam that is useful in dark environments.

 

Cinema projector

In a cinema projector, light from the lamp is focused through a series of lenses to create a beam of light that projects the image onto a screen.

 

Presentation laser

Laser pointers used in presentations generate beams of light to point out information on screens or surfaces.

 

Automotive headlight

Modern automotive headlamps often use bright beams of light, such as LED projectors, to provide more efficient and focused illumination on the road.

 

Stage lamps

In theatrical lighting, stage lamps generate beams of light that are specifically aimed at areas of a stage to highlight actors or scenic elements.

 

These examples illustrate how the light beam concept is applied in various technologies and situations to achieve specific lighting effects.

Optimum illumination
Understanding the light beam has practical applications. In the design of architectural lighting systems, it is used to highlight specific features and minimise energy losses.
Technological potential

The careful study of the light beam is a fundamental element in driving innovations in various disciplines.

 

Its influence extends to the improvement of lighting systems, with a focus on maximising efficiency and reducing energy consumption.

 

The application of these principles transforms the way we illuminate our environments.

Innovation

At Actilum, this detailed research into the light beam not only guides our focus on lighting efficiency, but also influences our pursuit of innovations in fields as diverse as energy management and sustainable environment design.

 

This in-depth knowledge becomes an essential resource as we explore creative ways to apply light in practical solutions that go beyond conventional lighting, driving our ongoing commitment to developing technologies that align with the changing demands of an ever-evolving world.

 

Learn more about us!

Tp Max.

The maximum temperature that LEDs can reach to work properly is about 40°C and in some cases, 65°C, depending on the manufacturer and model.

 

In the case of luminaires in general, they can reach higher temperatures in the heatsink up to 90°C while their electronics can have a temperature of between 60°C to 80°C.

 

High temperatures are the enemy of LEDs.

Relationship between lumen vs. temperature

Lifespan

The lifespan is the estimated duration that an object can have, correctly fulfilling the function for which it has been created. It is usually calculated in hours of life.

 

For certain technologies, such as LED, there are also other indicators of lifespan such as the point at which the luminous depreciation begins, which depends on:


– Deterioration due to aging.
– Accumulation of dust or dirt on optical parts
– Oxidation of the internal part of the luminaire
– Temperature variations
– Installation failures…

Example of lifespan of an electronic product

In electronic products, their service life depends on the electronic component with the least useful hours.

LED color

In LED lighting, the colour temperature emitted by a light source plays a fundamental role in defining the essence of the light that surrounds us.

 

This parameter, measured in degrees Kelvin (K), shows us a range of tones from warm, pleasant light to cold, stimulating light.

 

In this article, we explain the significance of LED colour temperature and its impact on our everyday visual experiences.

 

The fundamental principles of colour temperature in LED technology.

 

The basis of LED colour temperature goes back to a fascinating physical principle: the behaviour of a black body when heated.

 

 

When this body is subjected to an increase in temperature, it emits light, and the shade of this light varies according to the temperature in degrees Kelvin.

 

It is this luminous diversity that gives rise to the tones that we perceive as warm, neutral and cool light colour in LED luminaires.

 

It is essential to understand that colour temperature not only affects the aesthetic appearance of light, but also influences psychological and emotional aspects.

 

Light emitted in warm tones can induce a cosy and relaxing feeling, as opposed to cold light, which tends to intensify concentration and alertness.

 

Manufacture of LED colour temperature luminaires

The production of LED lamps involves the precise application of chemical combinations in a process that demands specific skills in the manipulation and mixing of compounds.

 

The efficacy of LED light bulbs is based on the meticulous combination of chemical compounds during their manufacturing process. Each compound plays a specific role in light emission, and the selection of these components is decisive for the final colour temperature of the device.

 

At Actilum, LED lighting engineers and designers work to create combinations that suit various environments and needs.

 

From the warmth that brightens a living room to the clarity that boosts productivity in a workspace, colour temperature becomes a versatile tool for customising the lighting experience.

Practical applications in everyday life

The distinction between cool, neutral and warm light in lighting plays an essential role in creating specific moods.

 

The cool white light (5000-6500K) with a higher colour temperature emits a bright and stimulating light, ideal for environments where greater visibility and concentration is sought, such as work areas.

 

 

On the other hand, neutral light (3500-5000K) offers a balanced light, suitable for versatile environments such as offices and shops.

 

Meanwhile, warm white (2700-3500K) with a lower colour temperature provides a soft and cosy light, perfect for relaxing and convivial spaces such as living rooms.

 

The choice between these shades allows the lighting to be adapted to the specific needs of each space, thus contributing to the creation of personalised and comfortable visual experiences.

 

Colour temperature in LED lighting as an essential tool in lighting design.

 

LED colour temperature is not just a technical detail, but a powerful tool that influences our perception of our surroundings.

 

 

From the science behind it to the practical applications in our daily lives, colour temperature is positioned as an essential element in modern lighting design.

 

By understanding and appreciating the complexity of LED colour temperature, we can take full advantage of its benefits, creating illuminated spaces that not only meet functional needs, but also elevate our visual experiences to new heights.

 

In the world of LED lighting, colour temperature is not just an aesthetic choice, but a tool that shapes our environment and transforms the way we live and work.

 

Our approach

At Actilum we emphasise LED colour temperature as a fundamental element in our approach to lighting design.

 

We understand the significant influence this parameter has on the creation of exceptional visual environments and experiences.

 

We value the versatility offered by LED colour temperature as a means to meet the aesthetic and functional expectations of our customers, offering customised and efficient solutions.

LED colour temperature is not simply a technical aspect, but a dynamic tool that enhances creativity and functionality in the creation of exceptional lighting environments.

 

Get to know us and make an enquiry for your next LED lighting project!

Luz directa

Backlight

eficiencia

Efficiency lm/W

Luminous efficiency or luminous efficacy (lm/W) is the measure for evaluating the performance of light sources, especially in the context of technologies such as LED luminaires.

This indicator is defined, for example, as the quotient or ratio between the luminous flux of a lamp, measured in lumens, and the electrical power consumed.

Lighting sustainability

Less energy, more light

When a light source, such as LED lamps, operates with high luminous efficiency and adequate power, it means that it is generating more light with less electrical energy.

This efficiency is essential because energy that is not converted into light is dissipated as heat. Consequently, higher luminous efficiency means less energy wasted in the form of heat and higher efficiency in terms of luminous flux emitted.

Luminous efficiency formula

Luminous efficiency (lm/W) is calculated by dividing the luminous flux, expressed in lumens, by the power consumed, measured in watts. This simple but powerful formula gives us a direct quantitative indicator of how much light is produced for each unit of electrical energy used.

In other words, the formula is expressed as:

Luminous Efficiency (lm/W) = Luminous Flux (lm) / Power Consumption (W)

Understanding each component of this equation is essential.

Luminous flux represents the total amount of visible light emitted by the light source, measured in lumens.

On the other hand, the power consumed is the amount of electrical energy used by the light source, measured in watts.

Luminous efficiency therefore gives a clear picture of how much light is being produced for each watt of electricity consumed.

Practical applications

Luminous efficiency examples

Understanding the luminous efficiency of LEDs is fundamental to the design of efficient and sustainable lighting systems.

Traditional incandescent bulb:

  • Luminous flux: 800 lumens
  • Power Consumption: 60 watts
  • Luminous Efficiency: 800/ 60 = 13.33 (lumens per watt lm/W)

High efficiency LED:

  • Luminous flux: 1200 lumens
  • Power Consumption: 10 watts
  • Luminous Efficiency: 1200/10 = 120 lm/W


High pressure halogen floodlight

  • Luminous flux: 500 lumens
  • Power Consumption: 50 watts
  • Luminous Efficiency: 500/50 = 10 lm/W

More advanced technologies, such as LEDs, tend to offer much higher luminous efficacies compared to older technologies, such as incandescent lamps or halogen bulbs.


Higher luminous efficacy indicates that more light is being generated with less energy consumption, which is essential for efficient and sustainable lighting.

Responsibility for efficiency, sustainability and innovation

At Actilum, we recognise the importance of luminous efficiency as a key element in creating state-of-the-art lighting solutions.

Our dedication to luminous efficiency and performance translates not only into the careful selection of technologies such as high-performance LEDs, but also into the intelligent design of lighting systems that maximise light output while minimising energy consumption.

We are constantly looking for ways to improve the luminous efficiency of our products, adopting technological innovations and design strategies that optimise the balance between luminous flux and energy consumption.

This approach not only aligns with today’s sustainability standards, but also ensures that our customers experience lighting solutions that go beyond conventional efficiency.

Specialised advice on your LED lighting projects

At Actilum, we understand that every project has unique requirements. That’s why our team of experts not only provide leading LED luminous efficacy products, but also offer expert advice.

Measurable results

We believe in the importance of measuring results. That’s why we implement accurate metrics to evaluate the luminous efficiency of our projects.

This not only allows us to ensure optimum performance, but also gives our customers peace of mind that they are investing in lighting solutions with real and measurable impact.

Our commitment

Our commitment to sustainability goes beyond luminous efficiency. We consider aspects such as the lifespan of our products, the use of environmentally friendly materials and the responsible management of resources.

We are firmly committed to leading the way towards a future where lighting is not only efficient, but also environmentally friendly.

We are available for questions regarding this and other topics related to your new lighting projects.

 

Ejemplo de eficiencia luminosa (lm/W)

Lumen

Lumen meaning: unit of the International System of Measurement, which is used to quantify luminous flux. A precise measure of the luminous intensity emitted by a light source..

Lux and lumen

Technical lighting concepts

Lumen as a seemingly simple concept is often intertwined with another term: Lux (lx).

 

It is important to understand the difference between lumen vs. lux for an accurate technical understanding in the field of lighting.

 

Mathematical relationship
Lux is equal to lumen per square metre

The relationship between lumen and lux is remarkable for its mathematical simplicity.

 

One lux is equivalent to one lumen per square metre. This direct connection between the two units enables an effective assessment of lighting in quantitative and technical terms.

 

The mathematical relationship between lux and lumen per square metre is essential to understand how the light emitted directly affects a specific surface.

 

Lux (lx), being the unit of illuminance measurement, provides valuable information about the amount of light incident on a given area. This concept becomes even more significant when it is recognised that one lux is equivalent to one lumen per square metre.

 

Practical example

 

To illustrate this, consider a practical example: if a lamp emits 500 lumens and that light is evenly distributed over an area of 1 square metre, the illuminance at that point would be 500 lux.

 

 

This direct relationship allows lighting professionals to precisely calculate the amount of luminous flux emitted by a light source to meet the specific requirements of a space, thus ensuring optimal levels of visible light.

 

The lumen-to-lux ratio per square metre is also critical in the design of efficient and customised lighting systems.

 

By understanding this connection, engineers can adjust the power of the light sources and their distribution to achieve uniform and appropriate illumination according to the particular needs of each environment.

 

 

This mathematical approach provides a quantitative basis for informed decision making in the design and implementation of lighting projects, ensuring not only a well-lit environment, but also efficient energy utilisation.

 

Ultimately, the lux-to-lumen ratio per square metre is not only a technical component, but a key tool for optimisation and efficiency in the field of lighting.

 

Lumen and Lux as fundamentals for optimal performance in technical lighting

Lumen and lux are two intrinsically connected but distinct concepts in the world of technical lighting.

 

Understanding the connection between the two units establishes a robust basis for the planning and realisation of lighting projects, ensuring efficient results and optimal luminous efficacy.

 

Our focus is on excellence and innovation.

We are committed to providing lighting solutions with the highest quality standards.

 

At Actilum, we are committed to focusing on efficiency and advanced technology as we seek to provide lighting solutions that excel in performance, while promoting sustainability and well-being.

 

Our approach translates into a constant refinement of products that are aligned with the principles of energy efficiency and environmental friendliness.

 

We work to integrate innovations that not only improve lighting performance, but also contribute to the creation of more sustainable and comfortable environments.

 

At Actilum, the mission to light the future involves not only providing high quality light, but also leading the way towards responsible solutions that benefit communities and the planet.

 

We are available for questions about your next project!

 

Consumption

Relationship between consumption and price kw/h

In the contemporary world, electricity consumption has become a fundamental aspect of our daily lives, shaping the way we use and understand energy.

In this context, the term Electricity Consumption is an essential element in understanding the magnitude of our energy footprint.

We will examine the definition and importance of this concept, as well as recent changes to energy labelling in the European Union that have transformed the way we assess the efficiency of our electrical devices.

In addition, we will dive into the specificity of energy efficiency in lighting products, deciphering how our everyday choices can influence not only our bills, but also environmental sustainability.

What is the definition of this concept?

 

Kilowatt hours (kw/h)
Electricity consumption is defined as the amount of energy or power demanded during a specific period. The unit of measurement used to quantify this consumption is the kilowatt-hour (kW/h). This term refers to the energy consumed or power used during one hour.

It is essential to understand and efficiently manage our resources by knowing how much energy we use and how long we use it for.

In the dynamic landscape of electricity consumption, the price per kilowatt hour (kWh) is positioned as a determining factor.

Electricity prices fluctuate on the regulated market, directly influencing the electricity tariffs applied to our electricity consumption.

The unit of measurement, kilowatts (kW), plays a central role in the electricity bill, reflecting both consumption and the associated fixed price.

In this context, time discriminating tariffs introduce a strategic dimension, adjusting electricity prices according to the time zone.

Exploring PVPC tariff options and understanding variations in electricity prices throughout the day becomes essential to optimise consumption and efficiently manage costs.

Ultimately, making informed decisions about electricity tariffs and energy consumption translates directly into a more balanced electricity bill.

PVPC

PVPC is the acronym for Voluntary Price for the Small Consumer. This electricity tariff system, common in Spain, sets electricity prices in a regulated manner and applies to domestic consumers and small businesses.

Under the PVPC, prices vary throughout the day, reflecting supply and demand in the wholesale electricity market. This variability allows users to benefit from lower tariffs at times of lower demand, thus encouraging efficient management of electricity consumption and adaptation to market conditions.

The implementation of the PVPC aims to provide transparency and fairness in pricing for residential consumers and small businesses.

Changes to the energy label

From 1 March 2021, the European Union has implemented significant changes to the energy label, with the aim of optimising understanding and efficiency.

The “A+++, A++ and A+” categories for products were eliminated, establishing a common scale ranging from A to G. This measure aims to provide a clearer and more consistent classification for all rescaled products.

See EU article

These changes not only simplify decision-making for consumers, but also drive manufacturers to improve the efficiency of their products.

Energy rating

In the specific case of lighting products, efficiency plays a crucial role in determining their energy rating.

The rule applied is based on luminous efficacy, measured in lumens per watt (lm/W). How much light a device produces in relation to the amount of energy consumed is the key factor for its classification.

This means that, when choosing a luminaire or any other lighting device, we are not only considering how bright it is, but also how much energy it consumes to provide that light.

Choosing the right product

Opting for more energy-efficient products not only benefits our wallet in the long run, but also contributes to sustainability and reduced environmental impact.

Understanding electricity consumption and energy efficiency is essential in today’s age.

The revision of the energy label in the European Union is a significant step towards simplification and the promotion of more efficient products.

By considering efficiency in lighting and other devices, we not only make informed choices, but also contribute to a more sustainable future.

Our commitment

Actilum is distinguished by its strong commitment to sustainability in all aspects of its operations and products.

From design to manufacturing, the company integrates eco-efficient practices to minimise its environmental impact.

We strive to develop lighting solutions that are not only aesthetically appealing and functionally advanced, but also environmentally friendly.

The use of cutting-edge technologies and meticulous attention to energy efficiency are tangible examples of our contribution to building a more sustainable future.

In addition, the company is committed to informing and educating its customers about the importance of making conscious choices regarding electricity consumption and lighting efficiency, thus fostering a community committed to the preservation of the ecosystem.

We are at your disposal for any questions you may have.

Energy rating according to consumption in lm/W

etiqueta-energetica-A

≥ 210 lm/W

etiqueta-energetica-B

De 185 a 210 lm/W

etiqueta-energetica-C

De 160 a 185 lm/W

etiqueta-energetica-D

De 135 a 160 lm/W

etiqueta-energetica-E

De 110 a 135 lm/W

etiqueta-energetica-F

De 85 a 110 lm/W

etiqueta-energetica-G

< 85 lm/W

Voltage

Mesure et potentiel dans les circuits électriques

La tension, également connue sous le nom de différence de potentiel, apparaît comme une grandeur physique essentielle qui mesure la disparité du potentiel électrique entre deux points.

Tension électrique

La tension électrique est configurée comme une force qui fait circuler le courant dans le contexte des systèmes électriques. Nous abordons cette grandeur d’un point de vue technique et analytique, en reconnaissant le caractère unique de chaque différence de potentiel.

Une évaluation approfondie de ces différences est effectuée pour garantir l’efficacité de la mise en œuvre des projets dans le domaine de l’électricité.

Types de tension

Il existe deux principaux types de tension : la tension continue, présente dans les batteries et les circuits électroniques, et la tension alternative, caractérisée par une onde sinusoïdale et courante dans les systèmes de distribution d’électricité.

La capacité à comprendre et à manipuler les tensions continues et alternatives est essentielle dans les domaines de l’électrotechnique et de l’électronique.

Une mesure précise

Voltmètres

Pour quantifier la tension avec précision, on utilise des outils spécialisés tels que le voltmètre. Ces instruments de mesure permettent d’évaluer l’ampleur de la différence de potentiel et fournissent des informations précieuses pour la conception et la maintenance des systèmes électriques. La précision des mesures est essentielle pour garantir des performances fiables et sûres.

Unité de mesure

Volt

Le volt est l’unité de mesure SI qui quantifie la différence de potentiel électrique entre deux points d’un circuit électrique. Un volt est défini comme l’énergie consommée par un courant électrique d’un ampère traversant une résistance d’un ohm.

En termes plus simples, le volt mesure la force ou la pression avec laquelle le courant électrique circule dans un système. Il est essentiel pour comprendre et gérer le comportement électrique dans divers appareils et applications.

Analyse des variations de tension

Dans chaque projet, Actilum ne se contente pas de reconnaître ce qu’est la tension électrique en tant que grandeur physique, mais l’aborde avec une compréhension profonde et une attention méticuleuse.

Les variations de tension désignent les oscillations de l’amplitude de la différence de potentiel électrique dans un circuit. Ces variations, mesurées en volts, peuvent être positives ou négatives et sont essentielles pour comprendre la stabilité et les performances des systèmes électriques.

Loi d’Ohm

La loi d’Ohm établit la relation fondamentale entre le courant électrique (I), la résistance électrique (R) et la tension (V) dans un circuit électrique.

Selon cette loi, le courant (I) qui traverse un conducteur est directement proportionnel à la tension appliquée (V) et inversement proportionnel à la résistance (R) du conducteur.

La formule mathématique qui représente la loi d’Ohm est I = V/R.

En d’autres termes, le courant augmente avec une augmentation de la tension ou diminue avec une augmentation de la résistance. La loi d’Ohm est essentielle pour comprendre et calculer les relations électriques dans les circuits et constitue un outil fondamental dans l’ingénierie électrique et électronique.

Sources d’énergie

Dans les systèmes d’éclairage, les sources électriques jouent un rôle essentiel en fournissant l’énergie nécessaire aux luminaires. Quelques sources électriques courantes utilisées dans les systèmes d’éclairage sont décrites ici :

Alimentations conventionnelles

Ces sources alimentent en électricité les luminaires classiques, tels que les ampoules à incandescence ou les lampes fluorescentes. Elles fonctionnent à des tensions et des courants spécifiques en fonction des besoins de chaque type de luminaire.

Pilotes de LED

Spécifiquement pour l’éclairage par LED, les pilotes régulent le courant et la tension fournis aux diodes électroluminescentes (LED), assurant ainsi leur fonctionnement efficace et durable.

Alimentations régulées

Ils fournissent un courant constant et stable, essentiel pour les luminaires sensibles aux variations de l’alimentation électrique. Ils contribuent à maintenir des performances constantes et efficaces.

Actilum propose des solutions spécialisées et une approche minutieuse de la mise en œuvre des technologies électriques.
¡Contactez-nous !

voltaje

Actilum™ Spectrum

Actilum Spectrum is the part of our lighting laboratory that is responsible for creating tailor-made light spectra to suit the specific needs of each application.

 

The tailor-made light allows us to:

 

  • Accelerate plant growth and development.
  • Create more natural spaces prioritizing human health and well-being.
  • Improve the skin, eliminate stains, sterilize…
  • Highlight the textures of materials and fabrics.
  • Highlight white clothes and fluorescent inks.
  • Enhance the visual aspect of food.
    (fish, meat, fruits and vegetables)
  • Precisely adjust the lighting for professional make-up.
  • Reduce errors in machine vision systems.(laboratories and automated production)

 

And much much more.

Tailor-made spectra adapted for:

PLANTS

HUMANS

HEALTH

TEXTURES

PRODUCTS

FOOD

MAKEUP

A.I. VISION

High Efficiency

In order to reduce energy consumption without losing luminosity, Actilum has designed the High Efficiency technology.

 

Our systems are characterized by their simplicity and robustness, they are also 40% more efficient than conventional LED systems and use 30% less electronic components.

 

We have increased the amount of copper in their circuits to reduce voltage drops and offer a longer lifespan than the rest.

 

High Efficiency means 40% less heat, which translates into 40% less energy consumption for the same luminous flux.

High Efficiency Systems vs Conventional

tm30-icon

TM30

It is a new light measurement system created in 2015 where 99 color samples are taken into account, as opposed to the 8 used by the CRI standard.


This system measures:

  • Color fidelity / RF (Real Feel): similarity to reference light
  • Color gamut: saturation index
  • Shape of the gamut: hue and saturation graph


It is represented in a pie chart, where the black circle is the reference light (sunlight), the red circle represents the light to be measured.


If the red circle is inside the black circle it means that the colors are desaturated.


If the red circle is outside the black it means that the colors are oversaturated.

tm30-explanation-graphs
bienestar-circadiano

Circadian

Activate or relax, the light that helps your vital rhythm

This spectrum is programmed throughout the hours of the day to provide a natural light sensation in accordance with our body’s circadian rhythm.

espectro

Spectrum

The electromagnetic spectrum is the energy distribution of all electromagnetic waves.

 

Sunlight is measured in nanometers (nm) with a spectrometer. The maximum visible light for the human eye ranges from 380 nm to 730 nm and perceives the highest luminous flux in the set of green, yellow and amber colors.

Below is ultraviolet (UV) radiation and above is infrared (IR) radiation.

 

Conventional LED light has a high peak in blue and lacks azure and red colors.

espectro-electromagnetico

We offer customized spectra according to application:

hcla-grow

HCLa & Plant

Lighting for humans (activation) and plants

Suitable for shared spaces between people and plants where work or activities are carried out (offices, gyms, educational centers…).

actilum-spectrum-logo
neon-icon

Neon

Highlight the fluorescent inks (Red-Blue)

Spectrum for highlighting fluorescent inks in printing as well as on objects and surfaces.

neon-3B-2R
actilum-spectrum-logo
horticultura-microgreens

Microgreens

Enhances germination and sprout density

Section under development, if you need more information please contact us.

horticultura-enraizamiento

Rooting

Improves germination and root density

It accelerates germination and prioritizes rapid root growth and the first stage of stems and green leaf.

Enraizado
actilum-spectrum-logo
horticultura-hoja-verde

Green leaf

Increased density and thickness of stems and leaves

Section under development, if you need more information please contact us.

horticultura-farma-cbd

CBD Pharma

Improves organoleptic properties (Terpenes)

Section under development, if you need more information please contact us.

horticultura-frutos

Fruits

Increases fruit production and conservation

Section under development, if you need more information please contact us.

bienestar-hcl

HCL

The only azure light that cares about your health.

With this light spectrum you can control the activation or relaxation of people through the suppression (activation) or secretion (relaxation) of the hormone melatonin, which controls the circadian rhythm.

Tailor-made spectra according to application

*Request information about our spectra, we respond within 24/36H

arquitectura-cct

CCT

Correlated Color Temperature

Adjustable spectrum that allows us to balance the color temperature in our system from 2,700ºK to 6,500ºK.

retail-display

Display

High informative visual impact

Lighting with low color rendering index and high visual impact to highlight indications, signs, information, prices…

actilum-spectrum-logo

Textures

Enhancement of details in materials and surfaces

Balanced spectrum throughout the range with very high color rendering. The resulting light is as similar as possible to the sun, it enhances the color and texture of materials.

actilum-spectrum-logo
retail-electronica

Electronics

Increased definition in metallic and plastic materials

Spectrum with deep blue peak to accentuate the metallic and shiny effect of surfaces and products.

actilum-spectrum-logo
retail-ropa-producto

Clothing & Product

Color fidelity + shape definition

High color rendering spectra (90:50) and visual comfort.

Clothing – 3K

Clothing – 4K

Clothing – 5K

actilum-spectrum-logo
retail-fruta

Fruit

Vibrant and saturated colors

This spectrum is designed to enhance the color and freshness of fruits and vegetables, making them look more appetizing and fresh.

frutas-vegetales-retail
actilum-spectrum-logo
retail-pescado

Fish

Increased sensation of freshness

Sección en desarrollo, si necesitas más información ponte en contacto con nosotros.

retail-carne

Meat

Red pigment enhancement

Under these spectra, the meat has a much fresh appearance, as well as a more attractive color for sale.

Meat – 5K

carne-normal

Red meat – 5K

carne-roja
actilum-spectrum-logo
arquitectura-humano-planta

General & Plants

General illumination of spaces with live plants

This special architectural mix provides high CRI lighting while taking into account plant growth.

actilum-spectrum-logo
arquitectura-solar

Solar Spectrum

The closest light to sunlight

High color rendering spectrum and visual comfort. Ideal for indoor lighting where you want to achieve a natural effect as close as possible to sunlight.

Combines several LEDs with the latest SOLAR 5K technology.

  • Architecture
  • Cosmetics
  • Artificial vision
  • Industrial use (processes)
  • HCL (activation)
  • Horticulture (vegetative)
espectro solar
actilum-spectrum-logo

Measures

The importance of measurement

The importance of measurement in the world of LED lighting lies in its fundamental role in achieving optimum levels of precision and efficiency.

The types of measurement not only encompass light intensity, but extend to the meticulous assessment of spatial distribution. Every detail counts in the quest for excellence in lighting performance.


Measurement provides accurate data that not only allows the system components to be adjusted, but also ensures uniform and high quality illumination.

Physical quantities

In the broad landscape of physical quantities, it becomes essential for understanding and quantifying various phenomena.


Within the evaluation categories, we find point measurement and matrix assessment, both of which play key roles in obtaining accurate data.

Unit of measurement

To carry out these assessments, a diverse set of measuring instruments is used, each designed to fulfil a specific task.


The international system of units provides the basis for standardising these processes, using globally recognised units.

Measuring instruments

Light measurement

When it comes to quantifying light, a special type of instrument comes into play, the luxmeter. This device makes it possible to evaluate the luminous intensity at a specific point, thus contributing to the analysis and adjustment of lighting in various environments.


In the field of electrical current, another instrument becomes indispensable: the ammeter. This device not only quantifies the electrical current in a circuit, but also provides crucial information to ensure the proper functioning of electrical systems.

Valuation matrix

Matrix measurement, on the other hand, encompasses the understanding of quantities at a set of points, allowing for a more complete perception of large phenomena. This approach is particularly useful in fields such as meteorology and environmental engineering.


The various types of assessment, types of measuring instruments and units of measurement form the universal language for understanding physical quantities.


Whether through a one-off assessment with specialised instruments or through a matrix approach covering a large area, this essential tool allows us to measure and understand the world around us.

Volume units

In the design of LED backlighting systems, volume measurement units play a very important role.

These units allow the spatial distribution of light to be calculated, ensuring uniform illumination and avoiding areas of over- or under-lighting.

Measurement in the design and manufacture of LED backlighting systems is not only a necessary step, but an integral process encompassing several parameters.

The combination of advanced measurement tools and volume measurement units contributes to the creation of high quality, efficient and visually accurate products in the exciting field of LED lighting.

At Actilum we are genuinely committed to design tailored to the needs of each project. We strive to thoroughly understand our clients’ goals and requirements, focusing on specific details.

It is not just about providing lighting, but about being a close partner in the whole process, from conceptualisation to implementation.

We are available for questions about your next project.

¡Contact us at!

medidas