Need help?

actilum-wasap
Monday to Friday
From 9 a.m. to 6 p.m.
blank

Voltage

Measurement and potential in electrical circuits

Voltage, also known as potential difference, emerges as an essential physical quantity that measures the disparity in electrical potential between two points.

Electrical voltage

Electrical voltage is configured as a force that drives current flow in the context of electrical systems. We approach this quantity from a technical and analytical perspective, recognising the uniqueness of each potential difference.

 

A thorough assessment of these differences is carried out to ensure efficiency in the implementation of electricity projects.

 

Voltage types

There are two main types of voltage: direct voltage, present in batteries and electronic circuits, and alternating voltage, characterised by a sine wave and common in electrical power distribution systems.

 

The ability to understand and handle both DC and AC voltage is essential in electrical engineering and electronics.

Accurate measurement

Voltmeters

To quantify voltage accurately, specialised tools such as the voltmeter are used. These measuring instruments allow the magnitude of the potential difference to be assessed, providing valuable information for the design and maintenance of electrical systems. Measurement accuracy is essential to ensure reliable and safe performance.

Unit of Measurement

Volt

The volt is the SI unit of measurement that quantifies the difference in electrical potential between two points in an electrical circuit. A volt is defined as the energy consumed by an electric current of one ampere flowing through a resistance of one ohm.

 

In simpler terms, the volt measures the force or pressure with which electrical current flows in a system, and is essential for understanding and managing electrical behaviour in various devices and applications.

Analysing voltage variations

In each project, Actilum not only recognises what electrical voltage is as a physical quantity, but approaches it with deep understanding and meticulous attention.

 

Voltage variations refer to oscillations in the magnitude of the electrical potential difference in a circuit. These changes, measured in volts, can be either positive or negative and are essential to understanding the stability and performance of electrical systems.

Ohm’s Law

Ohm’s law establishes the fundamental relationship between electric current (I), electric resistance (R) and voltage (V) in an electric circuit.

 

According to this law, the current (I) flowing through a conductor is directly proportional to the applied voltage (V) and inversely proportional to the resistance (R) of the conductor.

 

The mathematical formula that represents Ohm’s law is I = V/R.

 

In other words, current increases with an increase in voltage or decreases with an increase in resistance. Ohm’s law is essential for understanding and calculating electrical relationships in circuits, and is a fundamental tool in electrical and electronic engineering.

Energy sources

In lighting systems, electrical sources play an essential role in providing the necessary power to the luminaires. Some common electrical sources used in lighting systems are described here:

Conventional Power Supplies

These sources supply electrical power to conventional luminaires, such as incandescent bulbs or fluorescent lamps. They operate at specific voltages and currents according to the needs of each type of luminaire.

LED Drivers

Specifically for LED lighting, the drivers regulate the current and voltage supplied to the light emitting diodes (LEDs), ensuring their efficient and long-lasting operation.

Regulated Power Supplies

They provide a constant and stable current, essential for luminaires that are sensitive to variations in the power supply.They help to maintain consistent and efficient performance.

Actilum offers specialised solutions and a meticulous approach to the implementation of electrical technologies.

 

 ¡Contact us!

Led’s create together

Mándanos tu currículum




Antes de enviar tu consulta puedes ver nuestro compromiso con tu privacidad

Responsable: Actilum RGB, S.L.

Finalidad de la recogida y tratamiento de los datos personales: gestionar la solicitud que realizas en este formulario de contacto.

Derechos: podrás ejercer tus derechos de acceso, rectificación, limitación y suprimir los datos en info@www.actilum.com, así como el derecho a presentar una reclamación ante una autoridad de control.

Información adicional: en nuestra política de privacidad encontrarás información adicional sobre la recopilación y el uso de su información personal. Incluida información sobre acceso, conservación, rectificación, eliminación, seguridad y otros temas.

Contact a technician

Before submitting your inquiry you can see our commitment to your privacy.

Responsible: Actilum RGB, S.L.

Purpose of the collection and processing of personal data: to manage the request you make in this contact form.

Rights: you may exercise your rights of access, rectification, limitation and deletion of data in info@www.actilum.com, as well as the right to file a complaint with a supervisory authority.

Additional information: in our privacy policy you will find additional information about the collection and use of your personal information. Including information on access, retention, rectification, deletion, security and other topics.

Contact

Before submitting your inquiry you can see our commitment to your privacy.

Responsible: Actilum RGB, S.L.

Purpose of the collection and processing of personal data: to manage the request you make in this contact form.

Rights: you may exercise your rights of access, rectification, limitation and deletion of data in info@www.actilum.com, as well as the right to file a complaint with a supervisory authority.

Additional information: in our privacy policy you will find additional information about the collection and use of your personal information. Including information on access, retention, rectification, deletion, security and other topics.

Privacy Overview
Actilum™

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

3rd Party Cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.